
CWE41740: NVCOMP: GPU COMPRESSION/DECOMPRESSION

EXPERTS

MAIN ROOM

Ben Karsin, Senior AI Developer Technology Engineer

Nikolay Sakharnykh, Senior Manager, Developer Technology

Guillaume Thomas-Collignon, DevTech Compute

BREAKOUT ROOMS

Breakout room #1: Eric Schmidt, Topic: general nvCOMP topics, nvCOMP interfaces

Breakout room #2: Akshay Subramaniam, Topic: closed source compressors, LZ77-based compression/decompression

NVCOMP
CUDA library for GPU compression/decompression

▪ https://github.com/NVIDIA/nvcomp, https://developer.nvidia.com/nvcomp

▪ One-stop shop for optimized GPU implementations of lossless (de)compression methods with a standard C/C++ interface to switch
between methods easily

▪ Current release - new features in 2.2

▪ Redesigned easy to use high-level interface -> starting point for new users

▪ 2 extremely fast compressors: ANS and GDeflate entropy-only

▪ What's coming - new features in 2.3

▪ New compression algorithms: Zstd decompression, Deflate compression/decompression

▪ High-level interface checksums

https://github.com/NVIDIA/nvcomp
https://developer.nvidia.com/nvcomp

LOW-LEVEL INTERFACE

▪ Low-level interface targets advanced users:

▪ metadata and chunking are handled outside of nvCOMP

▪ supports batch compression/decompression of multiple streams

▪ light-weight and fully asynchronous

// compute temporary memory size
nvcompBatchedLZ4DecompressGetTempSize(

compress_data.size(), chunk_size, &decomp_temp_bytes);

// allocate GPU memory:
// temporary storage, status pointers and decompression sizes
cudaMalloc(&d_decomp_temp, decomp_temp_bytes);
...

// run decompression kernel
nvcompBatchedLZ4DecompressAsync(

compress_data.ptrs(), compress_data.sizes(),
decomp_data.sizes(), d_decomp_sizes, compress_data.size(),
d_decomp_temp, decomp_temp_bytes, decomp_data.ptrs(),
d_status_ptrs,
stream);

Example of decompressing a batch of buffers on the GPU

https://github.com/NVIDIA/nvcomp/blob/main/doc/lowlevel_c_quickstart.md

HIGH-LEVEL INTERFACE

▪ The high-level interface was redesigned for nvCOMP 2.2 and enables the easiest way to ramp up and use nvCOMP in applications

▪ Metadata and chunking are handled internally by nvCOMP

▪ Unlike the low-level interface, it is best used on large contiguous buffers

▪ It can manage the required scratch space for the user.

▪ In nvCOMP 2.2 all compressors are available through both low-level and high-level APIs.

▪ Maintains a similar level of performance as the low-level interface for large input buffers.

▪ Using the high-level interface metadata, you can decompress an HLIF-compressed buffer without knowing how it was compressed

// read the compressed data from the GDS file into the device buffer
cuFileRead(cf_handle, d_compressed, lcomp, 0, 0);

// nvcompManager configured using the compressed data (synchronous)
auto nvcomp_manager = create_manager(d_compressed, stream);

// Configure decompression (synchronous)
auto decomp_config = nvcomp_manager->configure_decompression(d_compressed);

// Decompress the data (asynchronous)
nvcomp_manager->decompress(d_output, d_compressed, decomp_config);

Example of reading a file from disk with GPUDirectStorage and decompressing with nvCOMP

https://github.com/NVIDIA/nvcomp/blob/main/doc/highlevel_cpp_quickstart.md

NVCOMP 2.2 METHODS

▪ Cascaded: Novel high-throughput compressor ideal for analytical or structured/tabular data.

▪ LZ4: General-purpose no-entropy byte-level compressor well-suited for a wide range of datasets.

▪ Snappy: Similar to LZ4, this byte-level compressor is a popular existing format used for tabular data.

▪ GDeflate: Proprietary compressor with entropy encoding and LZ77, high compression ratios on arbitrary data.

▪ Bitcomp: Proprietary compressor designed for floating point data in Scientific Computing applications.

▪ ANS: Proprietary entropy encoder based on asymmetric numeral systems (ANS).

Using our benchmarking capability, you can quickly test the different methods to find the best one for your usecase. The below example
benchmarks the low-level interface against a given file.

// You can replace lz4 below with one of <cascaded | snappy | gdeflate | bitcomp | ans> to test out the
// other algorithms on your dataset
./bin/benchmark_lz4_chunked -f /data/nvcomp/benchmark/mortgage-2009Q2-col4-float.bin

files: 1
uncompressed (B): 164527964
comp_size: 148256777, compressed ratio: 1.11
compression throughput (GB/s): 7.00
decompression throughput (GB/s): 69.46

COMPRESSION RATIOS
Real-world data analytics

1

2

4

8

16

32

64

128

col 0
long

col 12
string

col 2
string

col 3
decimal

col 30
string

col 4
decimal

col 5
decimal

col 6
decimal

col 7
decimal

col 9
decimal

R
a
ti

o
 (

lo
g
 s

c
a
le

)

Cascaded LZ4 Snappy GDeflate-0 GDeflate-2 ANS Bitcomp

COMPRESSION THROUGHPUT
A100 40GB

1

2

4

8

16

32

64

128

256

512

col 0
long

col 12
string

col 2
string

col 3
decimal

col 30
string

col 4
decimal

col 5
decimal

col 6
decimal

col 7
decimal

col 9
decimal

G
B
/
s

(l
o
g
 s

c
a
le

)

Cascaded LZ4 Snappy GDeflate-0 GDeflate-2 ANS Bitcomp

DECOMPRESSION THROUGHPUT
A100 40GB

1

2

4

8

16

32

64

128

256

512

col 0
long

col 12
string

col 2
string

col 3
decimal

col 30
string

col 4
decimal

col 5
decimal

col 6
decimal

col 7
decimal

col 9
decimal

G
B
/
s

(l
o
g
 s

c
a
le

)

Cascaded LZ4 Snappy GDeflate-0 GDeflate-2 ANS Bitcomp

USE CASES

ACCELERATING IO IN DATA CENTER

▪ Decompression is a huge bottleneck in RAPIDS – most expensive operation across many real-world queries

Decompression speed is more important than compression,
must support common formats

50%
36%

14%

Sample ETL query breakdown
from GPU-BDB benchmark

decompression kernels sort kernels all other kernels

compressed
data on disk

compressed data
on GPU

uncompressed
data on GPU

PCIe

cuDF Parquet reader

ACCELERATING COMMUNICATIONS

▪ Improve all-to-all communications on slow networks

Both compression and decompression speed are important,
flexible to use any codec

2x E2E speed-up
with compression

Distributed Join Performance
on DGX SuperPod (Selene)

Speed-up of applying compression vs
sending raw data over 200Gbps NIC

“Scaling Joins to a Thousand GPUs”, ADMS’21
http://www.adms-conf.org/2021-camera-ready/gao_adms21.pdf

http://www.adms-conf.org/2021-camera-ready/gao_adms21.pdf

ACCELERATING SHUFFLE IN SPARK

▪ Compress data during shuffle operation in Spark

uncompressed
data on GPU

compressed
data on GPU

batched
(de)compressor

shuffle
operator

Peer GPU

System memory

Disk

Both compression and decompression speed are important,
flexible to use any codec

ACCELERATING IO IN GRAPHICS

1) bulk loading of levels and large scenes

2) streaming large geometry/textures

https://www.nvidia.com/en-us/geforce/news/rtx-io-gpu-accelerated-storage-technology/

24

2

.2

0

2

4

6

8

10

12

14

Hard Drive SATA SSD Gen4 SSD Gen4 SSD
Compressed

R
e
a
d
 B

a
n
d
w

id
th

 (
G

B
/
s)

Compressed data needed,
but CPU can’t keep up

.1

compressed
data on disk

compressed
data on GPU

uncompressed
data on GPU

compressed
data on CPU

uncompressed
data on CPU GPU

PCIe

CPU

PCIe

PCIe

https://www.nvidia.com/en-us/geforce/news/rtx-io-gpu-accelerated-storage-technology/

ARE GPUS A GOOD FIT FOR (DE)COMPRESSION ALGORITHMS?

COMPRESSION TECHNIQUES

▪ Fundamental compression ops

▪ Data deduplication – RLE, LZ, Dictionary

▪ Difference encoding – Delta, Frame-of-reference

▪ Entropy encoding – bit-packing, Huffman, ANS

▪ Many well-knowns schemes combine these together

▪ Deflate = LZ + Huffman

▪ zstd = LZ + Huffman + FSE/ANS

▪ Lots of pre-processing techniques (usually domain-specific)

▪ Bit-plane transpose, sort, BWT

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

7 7 7 7 7

4 4 4 4 4

8 8 8 8 8

7 8 8 8 9

e 6 c c 0

0 0 1 7 4 8 7 e

0 0 1 7 4 8 8 6

0 0 1 7 4 8 8 c

0 0 1 7 4 8 8 c

0 0 1 7 4 8 9 0

Huffman tree Bit-shuffle/transpose

CASCADED COMPRESSOR
Combining the blocks together: RLE + Delta + FOR + bit-packing

A,A,B,B,C,C 1,1,2,2,3,3

2,2,2 2:0,0,0

1,2,3 1,1,1

3 3:0

1 1:0

RLE

RLE

Delta

FOR + Bit-
packing

FOR + Bit-packing

Uncompressed Compressed

Dictionary

runs

vals

More detail in the GTC’20 talk: Software-Based Compression for Analytical Workloads

https://developer.nvidia.com/gtc/2020/video/s21597-vid

CASCADED RATIOS AND PERF
Great fit for structured data from analytics datasets

1

2

4

8

16

32

64

lo
g
 s

c
a
le

cascaded compression ratio
(uncompressed size / compressed size)

0

50

100

150

200

250

300

350

400

450

500

G
B
/
s

cascaded performance on RTX 3090

compression decompression

Dataset is derived from Fannie Mae’s Single-Family Loan Performance Data and can be obtained here: https://rapidsai.github.io/demos/datasets/mortgage-data
Each column is 100-200MB of uncompressed data
Sample row from the dataset: 100005072756|12/01/2001|GMAC MORTGAGE, LLC|8.0|124352.34|12.0|348.0|0.0|12/2030|27100.0|...

decimal interpreted as 8B integer, string and date as 4B integers

http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html
https://rapidsai.github.io/demos/datasets/mortgage-data

CASCADED RATIOS AND PERF
Great fit for structured data from analytics datasets

1

2

4

8

16

32

64

lo
g
 s

c
a
le

cascaded compression ratio
(uncompressed size / compressed size)

0

50

100

150

200

250

300

350

400

450

500

G
B
/
s

cascaded performance on RTX 3090

compression decompression

Dataset is derived from Fannie Mae’s Single-Family Loan Performance Data and can be obtained here: https://rapidsai.github.io/demos/datasets/mortgage-data
Each column is 100-200MB of uncompressed data
Sample row from the dataset: 100005072756|12/01/2001|GMAC MORTGAGE, LLC|8.0|124352.34|12.0|348.0|0.0|12/2030|27100.0|...

decimal interpreted as 8B integer, string and date as 4B integers

http://www.fanniemae.com/portal/funding-the-market/data/loan-performance-data.html
https://rapidsai.github.io/demos/datasets/mortgage-data

LZ4

255 34 a b c 255 255 12

4bit literal length
4bit match length Literal length LSIC (0B+) Literals (0B+) Match length LSIC (0B+)

INPUT:

d e f a b c d e f a

OUTPUT:

offset (2B)

Copy matches (min 4B)

token (1B)

Copy literals

SNAPPY

00… a b c 01…

First 2 bits of the tag byte:
00 – literal, 6bit len, 0B-4B len
01 – copy, 3bit len, 3bit offset, 1B offset
10 – copy, 6bit len, 2B offset
11 – copy, 6bit len, 4B offset

Literal length (0B-4B) Literals (1B+)

INPUT:

d e f a b c d e f a

OUTPUT:

Copy matches

tag (1B)

Copy literals

Match offset cont (1B-4B)tag (1B)

LEVELS OF PARALLELISM
Chunking is critical

one LZ stream – difficult to map to the GPU, creates dependencies between copies, future copies depend on previous data

many smaller independent LZ streams – better mapping to the GPU, more concurrent tasks; need to store offsets/sizes

64KB / warp

warp or threadblock-level parallelism within a LZ stream – threads cooperating on writing the output buffer

More detail in the GTC’21 talk: Optimizing Lossless Compression Algorithms on the GPU

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32401

TAKEAWAY

1. GPU’s fast memory and lots of compute power enables efficient compression/decompression

▪ Now developers have access to these methods through a new core CUDA library nvCOMP: https://github.com/NVIDIA/nvcomp

2. Think about ways to leverage compression in your applications

▪ We’d like to hear about your use cases!

3. Try nvCOMP and provide feedback - participate in shaping out the future of compression/decompression on GPU

a) Have an idea about a new feature?

b) Provide feedback on the interface?

c) Report an issue?

d) Would like to contribute?

https://github.com/NVIDIA/nvcomp

