BRIDGING THE GAP BETWEEN BASIC NEURAL LANGUAGE MODELS, TRANSFORMERS, AND MEGATRON MAGNUS EKMAN, PH.D., DIRECTOR ARCHITECTURE JARED CASPER, PH.D., SENIOR DEEP LEARNING SCIENTIST

AGENDA

Basic neural language models and autoregression

Encoder-decoder network for language translation

The attention mechanism

The Transformer, GPT, and BERT

Scaling transformer models with Megatron

LEARNING DEEPLEARNING

Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow

MAGNUS EKMAN

PREDICTING SEQUENTIAL DATA Using a recurrent neural network (RNN)

UNROLLING A RECURRENT NETWORK IN TIME Converts it into a feedforward network

LONG SHORT-TERM MEMORY Drop-in replacement for simple unit in RNN

- Gated units
- More weights to train

Better at capturing long-term dependencies

NETWORK LAYERS USED FOR WORD INPUT/OUTPUT

- Input: Embedding layer
- Output: Softmax

BASIC NEURAL LANGUAGE MODELS AND AUTOREGRESSION

WHAT IS A LANGUAGE MODEL? A model that describes how likely a sequence of words is

- Example use-case: Text autocompletion
- Likelihood of sequence depends on training data

Book

Model

 $\bullet \bullet \bullet$

Food

travel

Input sequence "Deep Learning"

Language model

Probability for each word in the vocabulary

Probability
High
High
• • •
Low
Low

Speech recognition - what did they say?

"Recognize speech using common sense"

"Wreck a nice beach you sing calm incense"

MORE LANGUAGE MODEL USE CASES

"I am student"

"Student am I"

"A student I am"

Which translation is most likely for "Je suis étudiant"?

"I am a student"

Training Text

"The more I read, the more I learn, and I like it more than anything else."

WHAT IS AN N-GRAM? n consecutive words from a body of text

n-grams with n=2

/the more/ /more i/ /i read/ /read the/ /the more/ /more i/ /i learn/ /learn and/ /and i/ /i like/ /like it/ /it more/ /more than/ /than anything/ /anything else/

First word	Predicted word	# of occurences	Proba
and	i	1	100%
anything	else	1	100%
	learn	1	33%
i	like	1	33%
	read	1	33%
it	more	1	100%
learn	and	1	100%
like	it	1	100%
	1	1	67%
more	than	2	33%
read	the	1	100%
than	anything	1	100%
the	more	2	100%

PREDICT NEXT WORD WITH 2-GRAM MODEL

ability given starting word

NEURAL LANGUAGE MODELS Fixed or variable length

AUTOREGRESSION Dynamically generate input sequence

Feed most probable word back as input

AUTOREGRESSION EXAMPLE

ENCODER/DECODER NETWORK FOR LANGUAGE TRANSLATION

LANGUAGE TRANSLATION

- View it as a text autocompletion problem
- Training sequence: "je suis étudiant START i am a student STOP"
- Now complete the sequence "je suis étudiant START"
- Just use a neural language model!

French: je suis étudiant

English: i am a student

LANGUAGE MODEL APPROACH

ENCODER/DECODER NETWORK

- Encoder encodes French sentence into an intermediate representation
- Decoder decodes this intermediate representation into an English sentence
- The decoder is just a neural language model
- Encoder embedding layer works with French words and decoder works with English words

THE ATTENTION MECHANISM

Sequence-to-sequence encoder-decoder model

duty as a onsists of mind that ebate, et and

RICHER INTERMEDIATE REPRESENTATION Let the decoder decide what to attend to

SOFT ATTENTION

For now, ignore how alignment vector is computed

ATTENTION EXAMPLE

- French: L'accord sur la zone économique européenne a été signé en août 1992.
- English: The agreement on the European Economic Area was signed in August 1992.

TRANSLATION NETWORK WITH ATTENTION

- Encoder produces one state vector for each input word
- Decoder creates an alignment vector for each output word
- Input to decoder is the weighted sum of encoder state vectors, where alignment vector serves as weights

THE TRANSFORMER, GPT, AND BERT

THE TRANSFORMER

- Encoder/decoder network with attention
- Encoder and decoder additionally use multi-headed self-attention
- No recurrent layers
- Decoder uses autoregression

n attention ally use multi-headed

SELF-ATTENTION

- In traditional attention the decoder attends to output of the encoder
- In self-attention a layer attends to the output of the preceding layer
- An important difference is what data is used to compute the weights

MULTI-HEADED SELF-ATTENTION

Building blocks

PUTTING IT ALL TOGETHER

The Transformer

Model based on Transformer decoder Pre-trained as language model Fine-tuned for other NLP tasks in end

application

GPT Generative Pretraining with Transformers

Model based on Transformer encoder

Pre-trained as masked language model and next-sentence prediction

BERT

Bidirectional Encoder Representations from Transformers

SCALING TRANSFORMER MODELS WITH MEGATRON

Data Parallelism (DP)

n copies of model parameters

PARALLEL TRAINING

Model Parallelism (MP)

Device 1 Device 2 Device 1 J Device 2 J Pipeline MP Tensor MP

Single copy of model parameters

- Parallelism limited by batch size

DATA PARALLELISM

 All-reductions of weight gradients after every iteration •Model size limited by device memory – Worked through GPT-2 ~2 years ago Cannot be used in isolation for large models

Too much data at a time leads to inefficient steps

Each layer of model is partitioned over multiple devices

[1] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism, arXiv:1909.08053, Shoeybi et al.

TENSOR MODEL PARALLELISM

$g \rightarrow \text{All-reduction} (Y_1B_1 + Y_2B_2)$ in forward pass

Slow across inter-server communication links

Tensor (Intra-Layer) Parallelism Split individual layers across multiple devices

Pipeline (Inter-Layer) Parallelism Split sets of layers across multiple devices Layer 0,1,2 and layer 3,4,5 are on difference devices

MODEL PARALLELISM Pipeline (Inter-Layer) Parallelism

Both devices compute difference parts of Layer 0,1,2,3,4,5

Tim	le						an				
1a							1a				
	1a					1a					
		1a			1a						
			1a	1a							

GPU 2 GPU 3 GPU 4

GPU 1

Time

PIPELINING

Tim	le						C		ιρςπι	Counc	
1a	1b						1	a	1b		
	1a	1b				1a		1b			
		1a	1b		1a	1	b				
			1a	1a	1b	1b					

GPU 2 GPU 3 GPU 4

GPU 1

Time

PIPELINING

1a	1b	1c							1a		1	b		1c		
	1a	1b	1c				1	а	1	b		1	С			
		1a	1b	1c	1	а		1	b	1	С					
			1a	1a	1b	1	b	1c	1c							

Time

GPU 2 GPU 3 GPU 4

GPU 1

Time

PIPELINING

1a	1b	1c	1d							1	а		1	b		1	С		10	b	
	1a	1b	1c	1d				1	а		1	b		1	С		1	d			
		1a	1b	1c	1d	1	a		1	b		1	С		1	d					
			1a	1	а	1b	1	b	1c	1	С	1d	1	d							

Time

GPU 2 GPU 3 GPU 4

GPU 1

Time

PIPELINING

1a	1b	1c	1d							1a		1	b		1	С		1d	28	a 2b
	1a	1b	1c	1d				1	а	1	b		1	С		1	d			2a
		1a	1b	1c	1d	1	а		1	b	1	d		1	d					
			1a	1	а	1b	1	b	1c	1c	1d	1(d							

Time

GPU 2 GPU 3 GPU 4

GPU 1

Time

PIPELINING

- p: number of pipeline stages
- m : number of micro batches
- t_f : forward step time
- t_b : backward step time

bubble time overhead = $\frac{1}{2}$

PIPELINE BUBBLES

total time = $(m + p - 1) \times (t_f + t_b)$ ideal time = $m \times (t_f + t_b)$ bubble time = $(p - 1) \times (t_f + t_b)$

bubble time p-1ideal time m

9	

DIFFERENT SCHEMES HAVE DIFFERENT TRADEOFFS

- Naïvely combining parallelism dimensions leads to poor throughput
- tradeoffs

Achieved teraFLOP per GPU

• Using parallelism efficiently thus requires one to reason through the interactions between different parallelism modes

• Each parallelism mode makes tradeoffs, and determining the optimal degrees of parallelism requires reasoning through these

Device 1 Device 2 Device 3 Device 4 Time

1	2	3	4						
	1	2	3	4				-	1
		1	2	3	4	-	1		
			1	-	1	2		2	3

Device 1 Device 2 Device 3 Device 4 Time

1 2	3 4	1 2	3 4	56				7	1	8	2 !	5 3	6	4	7	1	8 2	2	3		4	5	6	7	8	5	6	7	8	9 (1 ⁻) 1 :	1 2 9	1 1 0 1	1 2	1 1 3 4				1 5	9	1 6 1	0	1 3	1 1 4	12	1 9 5	1 6	10
1	2 3	4 1	2 3	4			5 1	6	2	7	3 8	3 4	5	1	6	2	7 3	8	4		5	6	7	8	5	6	7	8		Ç	9 1 ⁻	1 1 1 2	9 1 0	1	1		1 3	9	1 4	10	1 5 1	1	1 6 1:	2 <mark>1</mark> 3	9	1 4 1() 1 5	11
	1 2	3 4	1 2		3	1	4 2	5	3	6	4	7 1	8	2	5	3	6 4	. 7	5	8	6	7	8	5	6	7	8				9	1 1 0 1	1 2	1 0		1 1	1 2	10	1 3	11	1 4 1	2	1 ₅) 1 6	10	1 3	1 4	12
	1	2 3	4 1	1	2	2	3 3	4	4	5	1 6	5 2	7	3	8	4	5 5	5 6	6	7	7	8 8	5	6	7	8						9 1 0	1 1 1 2	9	9	1 0 1	0 1 1	11	1 2	12	1 3)	1 4	0 1 5	11	1 6 12	2 1 3	13

MORE EFFICIENT PIPELINE SCHEDULES

Assign multiple stages to each device (interleaved schedule)

Forward Pass

	7	7		8	3	9	10	11	12							Ç)
		8	3				9	10	11	12				Ç)		1(
8								9	10	11	12	ç)	13	1	0	
									9	C)	10	1	0	11	1	1

Backward Pass

5 1 4 14

S 150 -<u>Ч</u>О 125 teraFl **(**) 100 Achieved be 75 50

MORE EFFICIENT PIPELINE SCHEDULES

175B GPT model 96 80-GB A100 GPUs

Large throughput increases at small batch sizes, smaller at large batch sizes

Degree of pipeline, tensor, and data parallelism

Pipelining schedule

Global batch size

Microbatch size

See our recent paper Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

HOW DO WE NAVIGATE THIS CONFIGURATION SPACE?

Each of these influence amount of communication, size of pipeline bubble, memory footprint

Built on top of PyTorch

Supports various transformer models like GPT and BERT

Good performance on smaller models (e.g., BERT-Base and BERT-Large) and smaller scales as well

Implementation available at <u>https://github.com/nvidia/megatron-lm</u>

IMPLEMENTATION: MEGATRON-LM

RESOURCES FOR A DEEP DIVE

- https://nvidia.com/en-us/training/books/
- <u>https://github.com/NVIDIA/DeepLearningExamples/tree/master/</u> PyTorch/Translation/Transformer
- https://github.com/NVIDIA/Megatron-LM

4: D

EARNING DEEP LEARNING

Theory and Practice of Neural Networks, Computer Vision, Natural Language Processing, and Transformers Using TensorFlow

MAGNUS EKMAN

210

